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Abstract. Identification of parameter values for discrete element method (DEM) 

material models is a major issue for realistic simulation of bulk materials. Choos-

ing suitable parameter values is often done using trial and error in a disorganized 

manner, where efficiency largely depends on the experience of the DEM user. A 

methodical work flow, which is based on Latin hypercube sampling, Kriging and 

numerical optimization, was composed with open-source software. The calibrated 

DEM materials were subsequently validated against the physical data from meas-

urements and the number of required DEM simulations was recorded to assess the 

effectiveness of the overall method. The simulation results were within a few per-

cent of the desired experimental values after an average of 14 DEM runs. Disad-

vantageous boundary conditions, like a wide factor value range or the optimum 

being located at an edge, did not considerably influence the quality of the results. 
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1 Introduction 

The discrete element method (DEM) has gradually gained acceptance as a useful 

tool for predicting the behaviour of bulk particulates. One factor which has inhib-

ited the adoption of DEM is the difficulty in choosing suitable input parameters 

for the simulations, particularly those parameters which are not easily related to 

physical measurements of the material, e.g., interparticle friction coefficient. Most 

DEM simulations contain some parameters which can be obtained only by calibra-

tion, i.e., by varying the unknown simulation parameters until the simulation re-

sults are in good agreement with equivalent physical measurements. Some efforts 
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have been made to establish robust methods for DEM calibration, e.g., Yoon 

(2007), Favier et al. (2010), Johnstone (2010), Benvenuti at al. (2016). However, 

these are not widely used and ad hoc trial-and-error methods remain predominant 

which have many disadvantages (Hanley et al., 2011). 

An automated workflow for DEM material model calibration was described by 

Rackl et al. (2016). The DEM code used for this demonstration was LIGGGHTS 

(Kloss et al., 2012), the methodology was based on Latin hypercube sampling 

(LHS), Kriging and numerical optimization, and the simulations were planned and 

controlled using GNU Octave (Eaton et al., 2015). The aim of this paper is to veri-

fy the capability and efficiency of this approach for calibrating contact law param-

eters based on physical measurements of the angle of repose and bulk density. 

2 Materials and Methods 

The calibration process, described in Section 2.1, was verified by comparing its 

resulting solution sets against reference results from the same DEM model (de-

scribed in Section 2.2). The numerical experiments and reference results are de-

scribed in Sections 2.3 and 2.4, respectively. 

2.1 Calibration Method 

The calibration method applied in this study was described in detail by Rackl et al. 

(2016). In summary, it uses a two-step optimization process implemented in Oc-

tave (Eaton et al., 2015). The first optimization step is based on a Kriging meta 

model, which is parameterized with response data from sample points of a DEM 

model for the angle of repose and bulk density. Sample points are generated by 

means of Latin hypercube sampling (LHS). The user-defined material and contact 

parameter values are varied to obtain the required response data. Then multi-

objective optimization is applied to the Kriging models using a non-linear residual 

minimization approach based on the Levenberg-Marquardt algorithm (Levenberg, 

1944; Marquardt, 1963).  The specified multi-objective cost function includes the 

relative difference between physical measurements of the angle of repose and bulk 

density and a criterion involving the Rayleigh time step size. The latter is included 

to penalize choosing computationally-expensive sets of DEM parameters. In the 

second step, optimized material parameter values of the particle density and roll-

ing friction from the Kriging models are then used as starting values for the sec-

ond optimization process. The latter optimizes the parameters using the actual 

DEM model. 
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2.2 DEM Model 

This study used a simple DEM model to generate results for the bulk density and 

angle of repose. It consists of a top- and bottomless cylindrical steel container, 

placed onto a steel plate. In a first step, the cylindrical container is filled with par-

ticles, up to a certain height, so the bulk density can be measured using the known 

volume and mass within. In a second step, the container is lifted up, so the parti-

cles lose their lateral support and start forming a heap. From this heap, the angle 

of repose is measured using image processing. The DEM code used was 

LIGGGHTS. A Hertz-Mindlin contact model was used with an elastic-plastic 

spring-dashpot (EPSD) rolling friction model. 

2.3 Numerical Experiments 

Solution sets for various combinations of boundary conditions were generated. 

The factors and factor levels were selected based on the expected usage of the cal-

ibration process, where a DEM user estimates DEM contact model parameters and 

knows the approximate interval in which the most suitable parameter values are 

likely to occur. 

2.3.1 Factors and Factor Levels 

The robustness of the calibration method described in Rackl et al. (2016) was to 

be tested against four factors. With regard to the intended use of the calibration 

method, two of them can be viewed as stochastic, whereas the other two are based 

on human decisions. 

The last two factors, i.e., those which can be actively chosen, are the factor in-

terval width (FIW, in percent) and the number of sample points that are used to 

generate input for the Kriging models. In the progress of this study, the latter is 

expressed based on the number of factors used for the calibration process (samples 

per factor, samPfact). The FIW determines the range for each of the parameters to 

be used for calibration, i.e., FIW=33% yields a parameter range from 67 to 133 for 

a centered layout taking 100 as the base value. The two factors of stochastic nature 

are the random seed of the DEM particle factory in LIGGGHTS (rndSd) and the 

location of the optimal parameter set for the given DEM model (locOpt). The lo-

cation is expressed in relation to the factor interval boundaries used for the cali-

bration parameters. 

Three situations can be thought of for this location. Firstly, the optimal solution 

set lies right in the center of the calibration factor space. This situation would be 

ideal in terms of the optimization and only occurs when the user’s initial guess for 
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the parameters is optimal by chance. Secondly, the optimum lies inside the bound-

aries of the factor interval space, but is not in the center. This is considered most 

common, since the initial guess may not be exactly correct but at least within a 

sensible range of the optimum. Thirdly, and least favorably, the optimum for at 

least one of the calibration factors lies outside of the user-specified factor interval 

space. In this case the calibration method may output that the corresponding factor 

is located at the maximum or minimum value of the interval. If such a result is ob-

tained, the choice of factor interval has to be adapted and the calibration process 

repeated. For this study, two locations were studied. These are (1) at the center 

and (2) at the corner where all calibration factor values are minimal. The factors 

and factor levels used in this study are listed in Figure 1. 

2.3.2 Experimental Plan 

The experimental plan used for the numerical experiments in this study was creat-

ed and evaluated with R (R Core Team, 2014) and the package RcmdrPlugin.DoE 

(Groemping, 2014). It is a full-factorial design containing two two-level factors 

and two three-level factors, consisting of 36 distinct combinations of factor levels. 

Each run was repeated three times to be able to estimate the variance of the results 

as well as the repeatability of the calibration method. Figure 1 schematically 

shows the experimental plan without repeat runs. 

 

 

Figure 1: Schematic overview of factors, factor levels and all 36 factor combinations. 

2.4 Reference Results for the Calibration Process 

For verification of the calibration process, the DEM model described in Rackl et 

al. (2016) was used as a reference. As in this paper, particle density and rolling 

friction coefficient were used to calibrate the angle of repose (AoR) and bulk den-

sity (BD) based on data from literature. The DEM model was investigated at 400 

sample locations, based on an evenly-spaced regular 20x20 grid for the density 

and rolling friction. Results for the AoR and the BD were recorded and used to pa-

rameterize two Kriging models. Based on these Kriging models, surface plots 

were created for both the AoR and BD. They were subsequently used to find pa-

rameter combinations of rolling friction and density which yield results within a 

span of ±5% of the desired AoR and BD of 22° and 1500 kg/m3. The intersection 
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of both of these parameter sets was then considered to be the expected output of 

the calibration process. 

 

3 Results and Discussion 

The majority of solution sets were in excellent agreement with the expected out-

come and desired values for the angle of repose and bulk density were closely 

matched. 

3.1 Reference Results 

The reference models for the angle of repose and the bulk density are based on 

400 samples from the DEM model. The resulting contour plots are depicted in 

Figure 2. 

An angle of repose of 22° is somewhat hard to obtain with the selected model. 

As Figure 2a shows, the lower the particle density and the higher the rolling fric- 

 

 
Figure 2: Contour plots for the angle of repose (a) and bulk density (b), based on the reference 

models. Units are (°) and (kg/m3), respectively. 

 

tion, the higher the angle of repose becomes. The bulk density scales almost line-

arly with the particle density. Nonetheless, it reaches a plateau at particle densities 

greater than 2500 kg/m3. Rolling friction does not considerably influence the bulk 

density in this model. 

In Figures 3a and 3b, the desired 5% span is depicted for the angle of repose 

and bulk density. Figure 3c shows the intersection of both solution spaces. It can 

be seen how combining additional desired results reduces the diversity of possible 

solutions. However, there still exists a broad range of solutions, especially for the 

rolling friction, which could be approximately 0.5 or 0.7 to 1. 
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3.2 Calibration Process Results 

The calibration process functioned robustly and yielded results within the ex-

pected solution space. A small percentage of solution sets was located at greater 

distances from the expected outcome; these sets were investigated in more detail. 

 

 
Figure 3: Desired AoR and BD solutions (±5% span) are indicated by black dots (a, b, c). Figure 

(d) shows the location of obtained solution sets in red. 

3.2.1 General Findings 

From all 108 calibration runs, 93 (~86%) resulted in a parameter set which lay 

within or close to the expected areas (termed ‘main’, Figure 3d). This shows that 

the calibration process gave sensible results for most of the cases tested in this 

study. Desired angle of repose and bulk density values were matched with mean 

differences of 1.7% (min. 0%, max. 18%) and 5% (min. 0%, max. 24.5%), respec-

tively. It took the calibration process an average of 14 runs (LHS excluded, min. 8, 

max. 37) to obtain a solution set and each set was reported back as “converged” 

from the optimization algorithm. From the rest of the obtained solution sets, 11 

(10%) were in a cluster located around an optimized density (ρO) of 2824 kg/m3 

(‘island’). Two further groups with two members each (1.9%) were at ρO around 
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3368 (‘isle_m’) and 4871 kg/m3 (‘isle_r’), respectively. Corresponding mean val-

ues for the different categories of results are listed in Table 1. 

 

Table 1: Mean values for the three result groups from the calibration process. 

ρO: optimized particle density; µr,O: optimized rolling friction coefficient 

group no. of solution 

sets in group 

AoR (°) BD (kg/m3) ρO (kg/m3) µr,O (-) 

main 93 21.7 1521 2096 0.76 

island 11 21.9 1868 2824 0.89 

isle_r 2 21.9 1867 4871 0.73 

isle_m 2 21.9 1868 3368 0.68 

3.2.2 Remote Solution Sets from the Calibration Process 

Closer examination of the island solution group showed that each of the 11 sets 

was a result from the factor combinations locOpt=bound and FIW=33%. The two 

sets of isle_r were both results from rndSd=4000, locOpt=bound, samPfact=13 

and FIW=66%. The results in isle_m had samPfact=9, rndSd=4000 and lo-

cOpt=bound in common. 

All of the results located outside of the expected solution region resulted from 

runs where the expected solution is located at the minimum values of the calibra-

tion factor interval (locOpt=bound). The lower density interval boundary for all 

configurations with locOpt=bound was 2100 kg/m3: very close to the computed 

main area results in the ‘main’ group. This means that the residual of the Rayleigh 

time step will always be around 1 for the expected solution area. Thus, any test 

run with the locOpt=bound tends to seek an optimal solution where the particle 

density (and hence the time step) is larger. It can be seen from Table 2 that with 

locOpt=bound each of the remote result groups gave a lower sum of residuals than 

the main group. It can be concluded that the initial selection of the factor interval 

width, in combination with an unexpected “optimal” solution location can lead to 

undesirable results, where measurement data are neglected in favour of a larger 

Rayleigh time step. It is unclear how this effect affects the calibration process re-

sults, when more parameters which alter the Rayleigh time step are included for 

calibration, e.g., Young’s modulus which could considerably affect the time step. 

 

4 Conclusion and Outlook 

The results of this study showed that the automatic DEM material model calibra-

tion process described in Rackl et al. (2016) is capable of robustly identifying 

suitable contact law parameters to fit physical measurements for the angle of re-

pose and bulk density, under various boundary conditions. Involving the time step 

in the optimization process helps the algorithm to select efficient contact law pa-

rameters. 
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Future studies should include more factors for calibration of the contact law pa-

rameters and add more DEM models to calibrate. Besides particle density and roll-

ing friction, parameters such as Young’s modulus and static friction coefficients 

could be added to increase the degrees of freedom the optimization algorithm can 

process. One would then be truly able to evaluate the usefulness of this approach, 

since the state-of-the-art approach for calibration of DEM parameters is trial-and-

error and human calibrators are very likely to lose track of the calibration process; 

this is especially true when many factors and several DEM models are involved. 

 

Table 2: Residuals (10-2) and residual sums (in brackets) of the optimization algorithm. Residual 

sums are computed as sum of the absolute terms of AoR, BD and the corresponding Rayleigh 

time step (RLTS) portion; mean values were used for each group. Note that a multi-variate 

optimization algorithm is used for the calibration process (cf. Rackl et al. (2016)). 

residual for main island isle_r isle_m 

AoR −1.4 −0.86 −0.68 −0.68 

BD 1.4 24.5 24.5 24.5 

RLTS, 10% 100 (103) - - - 

RLTS, 33% 100 (103) 44.6 (70.0) - 7.6 (32.8) 

RLTS, 66% 100 (103) 69.5 (94.9) 0.03 (25.2) 49.1 (74.3) 
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