Energy efficiency in the bulk materials handling industry W. A. Günthner, Ch. Tilke, S. Rakitsch The topic of energy efficiency is a very popular topic now, not least due to the recently concluded United Nations Climate Change Conference in Copenhagen. Increasing energy costs and the debate of the climatic change with its consequences are the nutrient medium for this development also in the industrial sector. This is the background of this article which deals with the question which potentials could become useable in using an energy efficient arrangement of processes and machines and how economic advantages in the global competition could be realised. #### 1 The change of the world climate - Origins and Impacts In the end of 2009 the 15th United Nations Climate Change Conference in Copenhagen, Denmark, caused a sensation in the world press. It is the second step after the conference of Kyoto, Japan, to confront the preceding climatic change and its consequences on international-law level. The aim for the industrial and commercial sector has to be to combine a reasonable and therefore saving input of resources with economical aims. Climatic change means the continuing increase of the average earth temperature. In the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) in 2007, six different scenarios of the future warming of the climate system are analysed. In the Best-case-Scenario (B1-Scenariao) the average temperature increases of 1.8°C till the end of the century whereas the Worst-case-Scenario (A1F1-Scenario) predicts an average warming of 4°C [1]. If we believe the climate experts, such a dramatic increase of the average temperature will lead to melting polar ice caps, rising sea levels, famines caused by bad harvests, a lacking of freshwater supply, a pejoration of air quality and irreversible impacts of the ecosystem. The costs caused by such extreme climatic changes can add up to 20 % of the global economics [2]. The human caused carbon emissions are considered the most important reason for the earth warming [1]. To confront these disastrous effects for mankind, the nations agreed for the first time on binding targets for greenhouse gas emissions at the 3rd United Nations Climate Change Conference in Kyoto in 1997 and fixed them in the often quoted Kyoto Protocol. In the Protocol, the climatic change is finally established as a global challenge on a political level and the greenhouse gas carbon dioxide is combated as the biggest "climate killer" which is influenceable by mankind. The agreement entered into force in the beginning of 2005 and includes now 182 nations as completely valid parties. The target agreed upon was an average reduction of 5.2 % from the 1990 levels in the first commitment period between 2008 and 2012 [3]. The 15th UN-climatic conference in Copenhagen 2009 aimed to agree to a new international framework for climate change mitigation beyond 2012. Even if this was not reached, the negotiators of the participant parties agreed to reduce the greenhouse gas emissions to keep any temperature increases to below 2°C compared to preindustrial levels [4]. But the required reduction of the international carbon dioxide emissions is contrary to the tendency of the last decades (see figure 1). Since the beginning of the industrialisation, the carbon dioxide percentage in the atmosphere has increased significantly, mainly during the last 50 years. This shows the importance of the gist of the 4th UN-climate report that an increase of the concentration of carbon dioxide in earth atmosphere contributes directly to global warming. It is at this point where the topic of energy consumption comes into play. Most of our energy resources are based upon fossil energy sources, which most important component again is carbon. That means that responsible and efficient energy consumption is the most important contribute to climate protection and is also the most important interest of mankind! Fig. 1: Global Temperature [5], Primary energy consumption [6] and Carbon dioxide concentration [7] since 1965 # 2 Cost Savings by efficient use of energy The climate protection as only argument does not seem sufficient for the partly highly expensive investment in energy efficient technologies. The companies have to sustain themselves in a hard global competition and to operate successfully anyway. But in this context, increasing energy costs lead to rethinking. Against this background, energy efficient equipment becomes more attractive of the economic point of view. Although the price for crude oil, as well as for natural gas and industrial power, has decreased since mid 2008, when the maximum price was reached (see figure 2), experts predict a continuing rising tendency for a long-term period: The overwhelming majority of the 200 energy market experts of the Centre for European Economic Research predicted an increase of energy cost for the next five years in August 2009 [10]. Fig. 2: History of energy costs [8], [9] According to a publication of the German Federal Environmental Agency, the lion's share of the industrial power consumption is caused to more than 60 % by electric motors (see figure 3). Process heat, lightening or heating use proportionately less power, but should not remain unconsidered when talking about energy efficiency [11]. Fig. 3: Electric power consumption in the German industry [11] Against this background, the Federation of German Industries commissioned a study at McKinsey, in which participated more than 70 companies and organisations in order to evaluate more than 300 levers to avoid greenhouse gas emissions in Germany. The sectors energy, buildings, transport and industry were considered. Thus so-called curves of abatement costs were created (see figure 4) which show the available measures to reduce greenhouse gas emissions. At the same time, these measures are evaluated monetarily, i.e. it is indicated, which costs arise per ton carbon dioxide equivalent. Nearly two thirds of the measures were evaluated as economically, e.g. energy saving motors, speed controllers, waste heat recovery, efficient lightening and optimised heating systems. These measures have together an abatement potential of circa 30 mega tons carbon dioxide equivalent and are therefore evaluated as economically reasonable as well as ecologically necessary. Fig. 4: Abatement costs for the industrial sector in Germany [12] A brochure of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, published in the middle of 2009, refers to similar ecological and economical results. It introduces e.g. the potentials in cross-section technologies, which are used in all sectors. It is said, that there is a saving potential up to 50 % for pressurised air systems, which are used in most of the industrial companies. This is shown with the example of an automobile manufacturer, which drove his pressurised air system with a water-cooled rotary screw compressor and four water-cooled piston compressors. An inspection showed that the requirement of pressurised air fluctuated very much. The rework lead to a pressurised air system with air-cooled rotary screw compressor: four machines manage the base load and three smaller machines are switched on additionally when peak load is reached. A particular pressurised air control technology controls the application of the compressor in dependence of the load. With this method, also the highest operating pressure could be reduced form 8.7 to 7.5 bars. Due to these improvements, the company saves now 483 megawatt hours annually and additionally circa 55,000 euros a year, because the cooling-water necessity was reduced. Moreover, it is stated that there is an economical saving opportunity of 12 to 15 % for pumping systems. The payback period for the refitting was in the exemplary case not more than 11 weeks. Even 80 % of saving potential is possible for the lightening in an industrial company. Altogether there are savings of 20 to 40 % of the entire industrial energy consumption possible till 2020 for economically reasonable conditions [13]. That the topic of Life Cycle Consideration in context with energy efficient systems plays an important role, is clearly showed by the following number of the Bavarian Environment Agency: If you use an electric motor with an annual service life of more than 3,000 hours, 95 % of the entire costs during the durability fall upon energy consumption, less than 3 % upon acquisition. It is therefore too short-sighted to make a decision only dependent on the acquisition price [14]. ## 3 Energy efficiency in the bulk materials handling technique As all other industrial branches, the bulk materials handling industry still has an enormous potential to save energy and costs as well. The decision for a certain kind of means of conveyance is a preliminary decision for or against an energy efficient and environmentally protecting transport of goods. An example of the extractive industry makes this clear. The extractive industry today is dependent on transporting big quantities of bulk materials to low costs. It is necessary, to transport the good from the decomposition place to a storage place, to a concentration or converting plant. The standard solution for this task is today often the application of dumpers, but the application of a belt conveyor system should always be considered as an alternative solution. Both competing systems have to be compared with regard to the applicability, the financing and the running costs when developing new projects. Because of the high fuel prices and the long delivery times of the dumpers, which are highly demanded, belt conveyor systems become more and more attractive. Compared to dumpers with regard to personal and operating costs, belt conveyor systems have enormous advantages [15]. That the belt conveyor system has also ecological advantages shows the following case-study by Zamorano [16], which provides a comparison between a dumper and a belt conveyor system with regard to the carbon dioxide emission for two different conveyor lines. In the first case (see figure 5), an entire quantity of 60 million tons of ore a year have to be transported from a decomposition area to a processing plant, which is 5 km away. The capabilities as well as the fuel requirement of the dumper with a loading capacity of 190 tons each were calculated on the base of information given by the company Caterpillar; the electricity generation is based on the consumption of natural gas. | | Truck | |--------------------------------------|-------------| | Availability | 80% | | Operating Hours | 7,008 hr | | Truck Cycle Time | 0.35 hr | | Tons Transported per truck | 543 t/hr | | Number of trucks required | 15.8 | | Fuel Consumption per truck | 140 l/hr | | CO ₂ -Emissions per truck | 372.4 kg/hr | | Total CO ₂ -Emissions | 41,113 t | | | Belt conveyor | |----------------------------------|---------------| | Availability | 90% | | Operating Hours | 6,570 hr | | | | | | | | | | | Absorbed power | 5780 kW | | Energy used | 37,975 MWhr | | Total CO ₂ -Emissions | 17,089 t | Fig. 5: Carbon dioxide emissions, case study 1 [16] The sample calculation shows, that it is possible to save an annual quantity of 24,024 tons of carbon dioxide, if belt systems are used instead of dumpers. This saving still increases, if the conveyor line is lengthened and a difference in altitude has to be managed. This clarifies example two: A quantity of 36 million tons of ore is transported over a distance of 8.4 km from the breaker to a processing plant which is situated 700 m higher than the breaker. The dumpers have a loading capacity of 300 tons each; the electricity generation is based again on the consumption of natural gas. As shown in figure 6, the belt conveyor system helps to save 67,676 tons of carbon dioxide a year. These savings are hard cash due to the determined commerce of carbon dioxide certificates decided in the Kyoto Protocol. | | Truck | |--------------------------------------|-------------| | Availability | 80% | | Operating Hours | 7,008 hr | | Truck Cycle Time | 1.25 hr | | Tons Transported per truck | 240 t/hr | | Number of trucks required | 21.4 | | Fuel Consumption per truck | 300 l/hr | | CO ₂ -Emissions per truck | 798.0 kg/hr | | Total CO ₂ -Emissions | 119,563 t | | | Belt conveyor | |----------------------------------|---------------| | Availability | 90% | | Operating Hours | 6,570 hr | | | | | | | | | | | Absorbed power | 17,550 kW | | Energy used | 115,304 MWhr | | Total CO ₂ -Emissions | 51,887 t | Fig. 6: Carbon dioxide emissions, case study 2 [16] Though the belt conveyor has great advantages as shown before confronted with a discontinuous transport, e.g. with trucks, and is considered as very energy efficient for transporting big quantities over a longer distance, improvement potential is still existing. When these equipments are designed, the motion resistances flow into the calculation of the drive capacity. A consideration of the percentage shares of the motion resistances show therefore also the possible saving potential of these conveyors. Fig. 7: Percental distribution of motion resistances of a long-distance horizontal belt conveyor [17] Such a distribution of the motion resistances was worked out by *Hager* and *Hintz* [17]. Their result is shown in figure 7. He makes clear, that 61 % of the entire resistance of horizontally lead systems results of the indentation rolling resistance. This value is influenced significantly by the condition and quality of the belt [18]. Because of the constructive design of the system, it is possible to reduce the secondary resistances which result, for example, from the supply and releasing of the bulk materials or of the chutes. They are about 9 % of the total demand. The bearing resistance of the idler can also be reduced, if smooth-running or particularly energy efficient belt idlers are chosen when planning a system [19]. According to manufacturer's declaration, a complete energy saving of 15 % can be reached, if a concerted optimisation of belt conveyor systems regarding their energy demand, for example in using energy saving belts and smooth-running idlers, is put into practice. Similar to most other industrial branches, the main part of the energy consumption in the bulk materials handling industry is lead back to the power requirement of electric motors. In the different conveyors they make the transport of the good possible either directly driving mechanical elements or indirectly in using a medium to be pumped, e.g. air. If the area of the conveyors is considered more closely, different starting points can be identified for saving energy. By choosing a system, the conveying principle determines very often the demand of power. Machines with only a little friction between the good to convey and the conveying element require much less energy than others. Because of ancillary conditions in hygiene, environment- or explosion protection, closed system types are very often required today for many conveying tasks. A higher friction and therefore an increased energy requirement cannot be avoided with these machines. But nevertheless these machines can be optimised with regard to their energy requirement by appropriate and constructive measures. The drives can be energetically optimised, for example, in using frequency controlled, efficient motors, low-loss transmission-units and an intelligent control. It is important to consider the interaction of the entire conveyor chain, besides the individual conveyor elements. Capable conveyor lines fulfil many transport tasks more quickly, which can lead to a reduced runtime of the machines and therefore to a reduced consumption. Moreover, the specific energy requirement per handled ton decreases very often with machines of high capacity. Due to the development of a number of studies in the field of port handling during the last years, the institute for materials handling material flow logistics (fml) has had the opportunity to visit many port handling companies at different port locations at home and abroad and to interview them in regard to the used conveyor machines and their energy requirements. It was confirmed, that – as we assumed before – the unloading equipment caused with great distance the main part of the energy consumption. The process of unloading a ship offers therefore as the greatest single consumer also the greatest saving potential in the energy balance of the company, and that's why it seems reasonable to consider this process more precisely. This is shown at an example of a handling company for agricultural products. Different factors play a part in the choice of the kind of unloading equipment. Companies often need unloading machines which are able to carry very different conveying good, free flowing goods like grain as well as cohesive goods like grist and other mill afterproducts. Moreover, the legal requirements with regard to negative environmental impacts caused by dust and noise have been tightened in many countries. Other aspects are capability, reliability, energy consumption and of course the purchase price of the machines. The analysis of the life cycle costs suits well to show, how the different qualities of the machines for example the energy consumption or the amount of maintenance under certain conditions, determined by discount rates or current prices, influence the entire costs. It is therefore possible to estimate, whether the investment in energy efficient conveying principles pays off. To calculate the life cycle costs exemplarily the three typical kinds of unloaders as screw-, chain- and pneumatic type are picked out. The calculation bases on the data showed in figure 8. Acquisition Costs Average Capacity Power consumption per ton Maintenance costs (first year) | Pneumatic | Screw Type | Chain Type | |------------|------------|------------| | 1,700,000€ | 2,600,000€ | 2,500,000€ | | 60 % | 75 % | 80 % | | 1.4 kWh/t | 0.9 kWh/t | 0.4 kWh/t | | 70,000 € | 56,000€ | 53,000 € | Fig. 8: Data of ship unloaders A handling facility with an annual handling volume of 1,000,000 tons of grain and one unloader (capacity 600 tons per hour; reliability 90 %) is considered. Every 10 years a heavy maintenance is performed, which leads to costs of 300,000 euros. The unloader is electrically operated; the electricity costs are 0.10 euros per kilowatt-hour. The averaged number of employees per day is 2.25, whose hourly wage is 20 euros. The operation time per day is 22 hours. Demurage and charter costs are not considered. Fig. 9: Life Cycle Costs of different kinds of ship unloaders The calculated life cycle costs are shown in figure 9. With approximate identical initial investment costs a clear difference in the entire costs arise over a period of 30 years. The higher costs of pneumatic unloaders are not only caused by the higher power requirement of those machines, but result also from the less averaged capacity and the therefore longer unloading time. A comparison of the similar effective unloaders of screw and chain type shows the cost benefit, caused by the lower power requirement. This benefit would be even more obvious, if you take the escalation of energy costs of the last few years as a basis. ## 4 Summary The factor energy efficiency will gain significance in future as a criterion for the acquisition and therefore as a target value in the phase of development of technical systems as well as in the bulk materials handling technique. This tendency will be determined at one hand due to increasing energy costs, which will focus more the life cycle costs of machines and systems when decisions of investment are made. At the other hand, the general climate debate encourages the ecological thinking in the context of sustainable economic activities. The ecological action, i.e. the economical handling of resources as electric current, which will become also more attractive financially in future as showed above, offers two advantages from the entrepreneur's point of view: The ecological necessity is now also economically reasonable. #### 5 Bibliography - [1] Solomon, S.; et. al.: Summary for Policymakers; In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press, Cambridge, UK and New York, USA, 2007. - [2] Stern, N.: The Economics of Climate change The Stern Review; Cambridge University Press, Cambridge, UK, 2008. - [3] United Nations: Kyoto Protocol to the United Nations Framework Convention on Climate Change; 11th DEC 1997; http://unfccc.int/resource/docs/convkp/kpeng.pdf; 17th DEC 2009. - [4] United Nations: Copenhagen Accord; http://www.bmu.de/files/english/pdf/application/pdf/cop15_cph_auv.pdf; 17th DEC 2009. - [5] Goddard Institute for Space Studies: Global Temperature Anomalies in 0.01 degrees Celsius; http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts.txt; 18th DEC 2009. - [6] BP p.l.c.: BP Statistical Review of World Energy June 2009; http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2008/STAGING/local_assets/2009_downloads/statistical_review_of_world_energy_full_report_2009.xls; 17th DEC 2009. - [7] Earth System Research Laboratory: Mauna Loa CO2 annual mean data; ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_mlo.txt; 18th DEC 2009. - [8] European Commission, Eurostat: Electricity & Gas industrial consumers half-yearly prices; http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/database; 21st DEC 2009. - [9] Organization of the Petroleum Exporting Countries (OPEC): Monthly Oil Market Report; http://www.opec.org/home/Monthly%20Oil%20Market%20Reports/2009/mr122009.htm; 21st DEC 2009. - [10] Centre for European Economic Research (ZEW): Schwerpunkt Energiemarkt Energiemarktbarometer, Juli/August 2009; ftp://ftp.zew.de/pub/zew-docs/zn/schwerpunkte/energiemarkt/Energiemarkt0709.pdf; 21st DEC 2009. - [11] German Federal Environment Agency (UBA): Stromsparen: weniger Kosten, weniger Kraftwerke, weniger CO₂ Fakten und Argumente für das Handeln auf der Verbraucherseite; http://www.umweltdaten.de/publikationen/fpdf-I/3191.pdf; 21st DEC 2009. - [12] McKinsey & Company, Inc.: Costs and Potentials of Greenhouse Gas Abatement in Germany; Report on behalf of "BMI initiativ Business for Climate"; 2007; http://www.mckinsey.com/clientservice/ccsi/pdf/costs_and_potentials_of_geenhouse_gas_full_report.pdf; 22nd DEC 2009. - [13] German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU): Energieeffizienz die intelligente Energiequelle; 2009; http://www.bmu.de/files/pdfs/allgemein/application/pdf/broschuere_energieeffizienz_tipps_bf.pdf; 22nd DEC 2009. - [14] Bavarian Environment Agency: Klima schützen Kosten senken; 2004; http://www.lfu.bayern.de/luft/fachinformationen/co2_minderung/doc/energieleitfaden.pdf; 22nd DEC 2009. - [15] Dilefeld, M.; Pohl, M.: Der Rohstoff Kupfer Gewinnung, Transport und Aufbereitung; In: Tagungsband Fachtagung Schüttgutfördertechnik 2009; Otto-von-Guericke-Universität Magdeburg, Magdeburg; 2009. - [16] Zamorano, S.: Overland Conveyors, a Relevant Tool in Reducing Environmental Impact in the Minerals Industry; In: Tagungsband BulkEurope 2008; Prag; 2008. - [17] Hager, M.; Hintz, A.: The Energy-Saving Design of Belts for Long Conveyor Systems; In: Bulk Solids Handling, Vol. 13 (1993), No. 4, Pages 749 758. - [18] Kropf-Eilers, A.; Wennekamp, T.: Energieoptimierte Fördergurte Entwicklung, Prüfverfahren und Betriebsmessungen; In: Tagungsband Schüttgut fördern und lagern; VDI, Fulda, 2008. - [19] Mukhopadhyay, A.; Chattopadhyay, A.; Soni, R.; Bhattnagar, M.: Energy Efficient Idler for Belt Conveyor Systems; In: Bulk Solids Handling, Vol. 29 (2009), No. 4, Pages 214 216.